Infinite-degree-corrected stochastic block model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model Selection for Degree-corrected Block Models

The proliferation of models for networks raises challenging problems of model selection: the data are sparse and globally dependent, and models are typically high-dimensional and have large numbers of latent variables. Together, these issues mean that the usual model-selection criteria do not work properly for networks. We illustrate these challenges, and show one way to resolve them, by consid...

متن کامل

Convexified Modularity Maximization for Degree-corrected Stochastic Block Models

The stochastic block model (SBM) is a popular framework for studying community detection in networks. This model is limited by the assumption that all nodes in the same community are statistically equivalent and have equal expected degrees. The degree-corrected stochastic block model (DCSBM) is a natural extension of SBM that allows for degree heterogeneity within communities. This paper propos...

متن کامل

Bayesian Degree-Corrected Stochastic Block Models for Community Detection

Community detection in networks has drawn much attention in diverse fields, especially social sciences. Given its significance, there has been a large body of literature among which many are not statistically based. In this paper, we propose a novel stochastic blockmodel based on a logistic regression setup with node correction terms to better address this problem. We follow a Bayesian approach...

متن کامل

Non-Backtracking Spectrum of Degree-Corrected Stochastic Block Models

Motivated by community detection, we characterise the spectrum of the non-backtracking matrix B in the Degree-Corrected Stochastic Block Model. Specifically, we consider a random graph on n vertices partitioned into two equalsized clusters. The vertices have i.i.d. weights {φu}u=1 with second moment Φ. The intra-cluster connection probability for vertices u and v is φuφv n a and the inter-clust...

متن کامل

Modeling and estimating change in temporal networks via a dynamic degree corrected stochastic block model

In many applications it is of interest to identify anomalous behavior within a dynamic interacting system. Such anomalous interactions are reflected by structural changes in the network representation of the system. We propose and investigate the use of a dynamic version of the degree corrected stochastic block model (DCSBM) to model and monitor dynamic networks that undergo a significant struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2014

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.90.032819